18 research outputs found

    P2X7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches

    Get PDF
    Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5'-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration

    Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications:

    Get PDF
    Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain. Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders

    Synthesis and in vitro biological evaluation of new P2X7R radioligands [11C]halo-GSK1482160 analogs

    Get PDF
    The reference standards halo-GSK1482160 (F-, Br-, and I-) and their corresponding precursors desmethyl-halo-GSK1482160 (F-, Br-, and I-) were synthesized from (S)-1-methyl-5-oxopyrrolidine-2-carboxylic acid or (S)-5-oxopyrrolidine-2-carboxylic acid and 2-halo-3-(trifluoromethyl)benzylamine (F-, Br-, and I-) in one step with 45–93% yields. The target tracers [11C]halo-GSK1482160 (F-, Br-, and I-) were prepared from desmethyl-halo-GSK1482160 (F-, Br-, and I-) with [11C]CH3OTf under basic conditions (NaOH-Na2CO3, solid, w/w 1:2) through N-[11C]methylation and isolated by HPLC combined with SPE in 40–50% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity (AM) at end of bombardment (EOB) was 370–740 GBq/μmol. The potency of halo-GSK1482160 (F-, Br-, and I-) in comparison with GSK1482160 (Cl-) was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for halo-GSK1482160 (F-, Br-, and I-) and GSK1482160 (Cl-) are 54.2, 2.5, 1.9 and 3.1 nM, respectively

    Synthesis and preliminary biological evaluation of [11C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate for the fractalkine receptor (CX3CR1)

    Get PDF
    The reference standard methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate (5) and its precursor 2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucine (6) were synthesized from 6-amino-2-mercaptopyrimidin-4-ol and BnBr with overall chemical yield 7% in five steps and 4% in six steps, respectively. The target tracer [11C]methyl (2-amino-5-(benzylthio)thiazolo[4,5-d]pyrimidin-7-yl)-d-leucinate ([11C]5) was prepared from the acid precursor with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the specific activity (SA) at EOB was 370–1110 GBq/μmol with a total synthesis time of ∼40-min from EOB. The radioligand depletion experiment of [11C]5 did not display specific binding to CX3CR1, and the competitive binding assay of ligand 5 found much lower CX3CR1 binding affinity

    Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor

    Get PDF
    P2X4 receptor has become an interesting molecular target for treatment and PET imaging of neuroinflammation and associated brain diseases such as Alzheimer’s disease. This study reports the first design, synthesis, radiolabeling and biological evaluation of new candidate PET P2X4 receptor radioligands using 5-BDBD, a specific P2X4 receptor antagonist, as a scaffold. 5-(3-Hydroxyphenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD analog, [11C]9) and 5-(3-Bromophenyl)-1-[11C]methyl-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one (N-[11C]Me-5-BDBD, [11C]8c) were prepared from their corresponding desmethylated precursors with [11C]CH3OTf through N-[11C]methylation and isolated by HPLC combined with SPE in 30–50% decay corrected radiochemical yields with 370–1110 GBq/µmol specific activity at EOB. 5-(3-[18F]Fluorophenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]F-5-BDBD, [18F]5a) and 5-(3-(2-[18F]fluoroethoxy)phenyl)-1,3-dihydro-2H-benzofuro[3,2-e][1,4]diazepin-2-one ([18F]FE-5-BDBD, [18F]11) were prepared from their corresponding nitro- and tosylated precursors by nucleophilic substitution with K[18F]F/Kryptofix 2.2.2 and isolated by HPLC-SPE in 5–25% decay corrected radiochemical yields with 111–740 GBq/µmol specific activity at EOB. The preliminary biological evaluation of radiolabeled 5-BDBD analogs indicated these new radioligands have similar biological activity with their parent compound 5-BDBD

    Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Model—Protocol Development

    Get PDF
    The fate of intranasal aerosolized radiolabeled polymeric micellar nanoparticles (LPNPs) was tracked with positron emission tomography/computer tomography (PET/CT) imaging in a rat model to measure nose-to-brain delivery. A quantitative temporal and spatial testing protocol for new radio-nanotheranostic agents was sought in vivo. LPNPs labeled with a zirconium 89 (89Zr) PET tracer were administered via intranasal or intravenous delivery, followed by serial PET/CT imaging. After 2 h of continuous imaging, the animals were sacrificed, and the brain substructures (olfactory bulb, forebrain, and brainstem) were isolated. The activity in each brain region was measured for comparison with the corresponding PET/CT region of interest via activity measurements. Serial imaging of the LPNPs (100 nm PLA–PEG–DSPE+89Zr) delivered intranasally via nasal tubing demonstrated increased activity in the brain after 1 and 2 h following intranasal drug delivery (INDD) compared to intravenous administration, which correlated with ex vivo gamma counting and autoradiography. Although assessment of delivery from nose to brain is a promising approach, the technology has several limitations that require further development. An experimental protocol for aerosolized intranasal delivery is presented herein, which may provide a platform for better targeting the olfactory epithelium

    Synthesis and preliminary biological evaluation of a novel P2X7R radioligand [18F]IUR-1601

    Get PDF
    The reference standard IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoroethylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 12% in three steps. The target tracer [18F]IUR-1601 ((S)-N-(2-chloro-3-(trifluoromethyl)benzyl)-1-(2-[18F]fluoroethyl)-5-oxopyrrolidine-2-carboxamide) was synthesized from desmethyl-GSK1482160 with 2-[18F]fluoroethyl tosylate, prepared from 1,2-ethylene glycol-bis-tosylate and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 1–3% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74–370 GBq/μmol. The potency of IUR-1601 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1601 and GSK1482160 are 4.31 and 5.14 nM, respectively

    Synthesis and initial in vitro characterization of a new P2X7R radioligand [18F]IUR-1602

    Get PDF
    The overexpression of P2X7R is associated with neuroinflammation and plays an important role in various neurodegenerative diseases. The [18F]fluoropropyl derivative of GSK1482160, [18F]IUR-1602, has been first prepared and examined as a new potential P2X7R radioligand. The reference standard IUR-1602 was synthesized from tert-butyl (S)-5-oxopyrrolidine-2-carboxylate, fluoropropylbromide, and 2-chloro-3-(trifluoromethyl)benzylamine with overall chemical yield 13% in three steps. The target tracer [18F]IUR-1602 was synthesized from desmethyl-GSK1482160 with 3-[18F]fluoropropyl tosylate, prepared from propane-1,3-diyl bis(4-methylbenzenesulfonate) and K[18F]F/Kryptofix2.2.2, in two steps and isolated by HPLC combined with SPE in 2–7% decay corrected radiochemical yield. The radiochemical purity was >99%, and the molar activity at end of bombardment (EOB) was 74–370 GBq/μmol. The potency of IUR-1602 in comparison with GSK1482160 was determined by a radioligand competitive binding assay using [11C]GSK1482160, and the binding affinity Ki values for IUR-1602 and GSK1482160 are 23.6 and 3.07 nM, respectively. The initial in vitro evaluation results, 8-fold less potency of [18F]IUR-1602 compared to [11C]GSK1482160, prevent further in vivo evaluation of [18F]IUR-1602 in animals and human

    Aerosolized In Vivo 3D Localization of Nose-to-Brain Nanocarrier Delivery Using Multimodality Neuroimaging in a Rat Model—Protocol Development

    Get PDF
    The fate of intranasal aerosolized radiolabeled polymeric micellar nanoparticles (LPNPs) was tracked with positron emission tomography/computer tomography (PET/CT) imaging in a rat model to measure nose-to-brain delivery. A quantitative temporal and spatial testing protocol for new radio-nanotheranostic agents was sought in vivo. LPNPs labeled with a zirconium 89 (89Zr) PET tracer were administered via intranasal or intravenous delivery, followed by serial PET/CT imaging. After 2 h of continuous imaging, the animals were sacrificed, and the brain substructures (olfactory bulb, forebrain, and brainstem) were isolated. The activity in each brain region was measured for comparison with the corresponding PET/CT region of interest via activity measurements. Serial imaging of the LPNPs (100 nm PLA–PEG–DSPE+89Zr) delivered intranasally via nasal tubing demonstrated increased activity in the brain after 1 and 2 h following intranasal drug delivery (INDD) compared to intravenous administration, which correlated with ex vivo gamma counting and autoradiography. Although assessment of delivery from nose to brain is a promising approach, the technology has several limitations that require further development. An experimental protocol for aerosolized intranasal delivery is presented herein, which may provide a platform for better targeting the olfactory epithelium

    Part~I. Evaluation of the noncovalent binding selectivity of the antitumor antibiotic (+)-CC -1065. Part~II. Use of an alternative strategy for generation of singly 5\u27-phosphorus-32 end-labeled double-stranded DNA for evaluation of the DNA alkylation properties of (+)-CC -1065 functional analogs. Part~III. Evaluation of the antitumor antibiotics, duocarmycins/pyrindamycins, and their functional analogs. Part~IV. An alternative preparation of a key intermediate employed in the synthesis of the left-hand subunit of (+)-CC -1065

    No full text
    Full details of the comparative DNA binding properties and cytotoxic activity of CDPI\sb{\rm n} (n = 1-5) and PDE-I\sb{\rm n} (n = 1-3) methyl esters are presented in efforts to establish the structural and functional features of (+)-CC-1065 that contribute to the sequence selectivity of the agent:DNA alkylation. The results of these studies provide sufficient evidence that the sequence selectivity of the (+)-CC-1065 may be attributed to the high affinity and noncovalent binding selectivity of the agent for A-T rich regions of DNA minor groove. An alternative strategy was used for securing substantial quantities of singly 5\sp\prime-\sp{32}P-end-labeled double-stranded DNA. This strategy was employed for examination of the comparative DNA alkylation property of (+)-CC-1065 versus the simple derivatives of the alkylation subunit, CPI. The profile of DNA alkylation by (+)-N-BOC-CPI and (+)-N-acetyl-CPI proved to be less selective and readily distinguished from that of (+)-CC-1065. The simple derivatives of the parent alkylation subunit (CI) of the (+)-CC-1065 left-hand segment showed the DNA alkylation profile similar to those of (+)-N-BOC-CPI and (+)-N-acetyl-CPI. This result suggests that CI constitutes the minimum pharmacophore of the (+)-CC-1065 alkylation subunit. In 1988 a new class of antitumor antibiotics called duocarmycins (A, SA, and C\sb1-C\sb2) were isolated from Streptomyces sp. The structural similarities between the duocarmycins and (+)-CC-1065 led us to study the DNA alkylation properties of these agents. The results show that there is a striking similarity in the profile of the duocarmycins DNA alkylation with that of (+)-CC-1065. Functional analogs of duocarmycins, (±\pm)-seco-CI-TMI and (±\pm)-CI-TMI, also displayed DNA alkylation profiles similar to those of duocarmycins. This illustrates that (±\pm)-CI-TMI incorporates the minimum potent pharmacophore of the duocarmycin DNA alkylation subunit and the common pharmacophore of the duocarmycins/CC-1065 alkylation subunits. Full details of the studies on the regiospecificity of the nucleophilic addition to selectively activated p-quinone diimines under the control of base-catalyzed, acid-catalyzed, and Lewis acid-catalyzed are presented. The regioselectivity of the nucleophilic addition to p-quinone diimine 36c under Lewis acid-catalyzed condition, permits an alternative preparation of N\sp1,N\sp5-dibenzoyl-5-amino-7-(benzyloxy)-3-methylindole, a key intermediate employed in the synthesis of the left-hand subunit of (+)-CC-1065
    corecore